The beauty behind x^{-x}

Uwe Stöhr

March 24, 2024

Email: uwestoehr@web.de

Contents

1 Introduction 2
2 The reciprocal 2
3 Euler's number and Derivative 3
4 Integral 4
4.1 Attempt to Integrate 4
$5 x^{-x}$ in complex space 9
5.1 Logarithm of negative numbers 10
5.2 Explanation of the spiral 12
6 It can be complex in the complex space 15
$6.1 x^{-\ln (x)}$ in complex space 15
$6.2 \exp \left(-x^{-x}\right)$ in complex space 15
7 In 3D 19

1 Introduction

First in school, later at the university, I was confronted with the function

$$
\begin{equation*}
g(x)=x^{x} \tag{1}
\end{equation*}
$$

The task the teacher/professor set was to differentiate it. The reason was that when one is able to do this, one really understood how to differentiate. It is also a nice example that 2 different differentiation approaches will lead to a result.
However, the function should be a simple exponential growth, but unintuitively it has a minimum. When looking closer one encounters more interesting and hard to explain facts. For example the spiral behavior for negative x.

Whenever I stumbled over $g(x)$ it in the past, I investigated a bit but I was always quickly stuck. As a PhD engineer I use math mainly as a tool and the function does not describe any problems I had to solve as engineer yet. Thus I never investigated deeper.
Recently, I wanted to use $g(x)$ to show my students how Euler's number is in everywhere and to use the function the way my teachers did. Since I could not answer questions an interested student might have when looking at the function, I investigated a bit since as teacher I should know more about the functions I use. This small paper is the result.

2 The reciprocal

The reciprocal of x^{x} turned out to be more interesting to unveil the mystery behind x^{x}. So we will mainly use it in the following.

$$
\begin{equation*}
f(x)=\frac{1}{x^{x}}=x^{-x} \tag{2}
\end{equation*}
$$

Fig. 1 shows $g(x)$ and $f(x)$ in the interval $[0,4]$.
$f(x)$ gives a hint for the question what rule with zero "has more power":

- $A^{0}=1$
- $0^{B}=0$

Fig. 1 shows that for $\lim _{x \rightarrow 0+} f(x)=1$. For $\lim _{x \rightarrow 0-} f(x)$ see Sec. 5 .

Figure 1: The functions $f(x)$ (blue) and $g(x)$ (red).

3 Euler's number and Derivative

Since $f(x)$ is differentiable, the minimum is quickly found:

$$
\begin{aligned}
x_{\min } & =1 / e \\
y_{\text {min }} & =e^{1 / e}
\end{aligned}
$$

But why is there Euler's number? The reason is that one can express every exponent function with an exponential function:

$$
\begin{equation*}
x=\exp (\ln (x)) \Rightarrow x^{-x}=\exp \left(\ln (x)^{-x}\right)=\exp (-x \ln (x)) \tag{3}
\end{equation*}
$$

So we get an exponential decay $e^{-a(x)}$ where a is

$$
\begin{equation*}
a(x)=x \ln (x) \tag{4}
\end{equation*}
$$

$a(x)$ must have an extreme since for $x=0$ and $x=1 x \cdot \ln (x)=0$, see also Fig. 2.
Calculating the derivative is in so far interesting as when moving towards zero, it does not converge to a maximal slope but the slope goes to infinity, see Fig. 3.
Looking at the derivative:

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x} f(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} e^{\ln (x)^{-x}}=\frac{\mathrm{d}}{\mathrm{~d} x} e^{-x \ln (x)} \\
& =e^{-x \ln (x)} \cdot(-\ln (x)-1) \\
& =-x^{-x}(1+\ln (x)) \tag{5}
\end{align*}
$$

this is clear. But it is not intuitive when just looking at the graph of $f(x)$.

Figure 2: The functions $x, \ln (x)$ and $x \ln (x)$.

4 Integral

The next interesting fact is that the integral from zero to infinity is almost 2. Once I did this 20 years back numerically, I thought the result is just a numerical rounding issue. But even with high precision and with different CAS systems, the result is:

$$
\begin{equation*}
\int_{0}^{\infty} x^{-x} \mathrm{~d} x \approx 1.9954559575 \tag{6}
\end{equation*}
$$

so definitively lower than 2 .
For the fun with my name and its German meaning I gave it the name "Gestöhrte" constant.

4.1 Attempt to Integrate

To integrate, the x can be written as $x=e^{\ln (x)}$. By using now the definition (Taylor series) of e^{x} :

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{7}
\end{equation*}
$$

the integral can be rewritten as:

Figure 3: The functions $f(x)$ (blue) and $\frac{\mathrm{d}}{\mathrm{d} x} f(x)$ (red).

$$
\begin{align*}
\int_{0}^{\infty} x^{-x} \mathrm{~d} x & =\int_{0}^{\infty} \mathrm{e}^{-x \ln (x)} \mathrm{d} x \\
& =\int_{0}^{\infty} \sum_{n=0}^{\infty} \frac{(-x \ln (x))^{n}}{n!} \mathrm{d} x \\
& =\sum_{n=0}^{\infty} \frac{-1^{n}}{n!} \int_{0}^{\infty} x^{n} \ln (x)^{n} \mathrm{~d} x \tag{8}
\end{align*}
$$

To solve now

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} \ln (x)^{n} \mathrm{~d} x \tag{9}
\end{equation*}
$$

one approach is to change the integrand to $u=\ln (x)$, thus $x=\mathrm{e}^{u}$ and $\mathrm{d} u=\frac{1}{x}=\mathrm{e}^{-u}$:

$$
\begin{align*}
& \int_{-\infty}^{\infty} \mathrm{e}^{u n} u^{n} \mathrm{e}^{-u} \mathrm{~d} u \\
& \int_{-\infty}^{\infty} \mathrm{e}^{u(n-1)} u^{n} \mathrm{~d} u \tag{10}
\end{align*}
$$

For the special case that one would like to know

$$
\begin{equation*}
\int_{0}^{1} x^{-x} \mathrm{~d} x \tag{11}
\end{equation*}
$$

one can use the trick Mr. Bazett uses in this video - to transform (10) into the Gamma function. The result is

$$
\begin{equation*}
\int_{0}^{1} x^{-x} \mathrm{~d} x=\sum_{n=0}^{\infty} \frac{1}{(n-1)^{n-1}} \approx 1.2913 \tag{12}
\end{equation*}
$$

The Feynman method of defining a superset of integral functions in the form

$$
\begin{equation*}
I(t)=\sum_{n=0}^{\infty} \frac{-1^{n}}{n!} \int_{0}^{\infty} \mathrm{e}^{u t(n-1)} u^{n} \mathrm{~d} u \tag{13}
\end{equation*}
$$

does not help much.
Using the CAS program MuPad to rewrite (10) also gives no beneficial result:

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{e}^{u(n-1)} u^{n} \mathrm{~d} u=\frac{1}{-(1-n)^{n+1}} \int_{u(1-n)}^{\infty} \mathrm{e}^{-t} t^{n} \mathrm{~d} t \tag{14}
\end{equation*}
$$

Another way is to solve (9) by partial integration n-times and then looking if there is a repeating pattern for each step:

$$
\begin{gather*}
\int_{a}^{b} \underbrace{x_{\hat{=} s}^{\ln (x)^{n}} \mathrm{~d} x=r \cdot s-\int_{a}^{b} r \mathrm{~d} s}_{\hat{=\mathrm{d} r} \mathrm{x}^{n}} \begin{array}{c}
r=\frac{x^{n+1}}{n+1} \\
s=\ln (x)^{n} \\
\mathrm{~d} s=\frac{n \ln (x)^{n-1}}{x} \mathrm{~d} x
\end{array} . \tag{15}
\end{gather*}
$$

This delivers the first integration step $k=0$:

$$
\begin{align*}
\left\{r \cdot s-\int_{a}^{b} r \mathrm{~d} s\right\}_{k=0} & =\left|\frac{x^{n+1}}{n+1} \cdot \ln (x)^{n}\right|_{a}^{b}-\int_{a}^{b} \frac{x^{n+1}}{n+1} \cdot \frac{n \ln (x)^{n-1}}{x} \mathrm{~d} x \\
& =\left|\frac{x^{n+1}}{n+1} \cdot \ln (x)^{n}\right|_{a}^{b}-\int_{a}^{b} \frac{x^{n}}{n+1} n \ln (x)^{n-1} \mathrm{~d} x \tag{16}
\end{align*}
$$

Step $k=1$ is:

$$
\begin{gather*}
\int_{a}^{b} \underbrace{\frac{x^{n}}{n+1}}_{\hat{=} \mathrm{d} r} \underbrace{n \ln (x)^{n-1}}_{\hat{=} s} \mathrm{~d} x=\left\{r \cdot s-\int_{a}^{b} r \mathrm{~d} s\right\}_{k=1} \tag{17}\\
r=\frac{x^{n+1}}{(n+1)^{2}} \\
s=n \ln (x)^{n-1} \\
\mathrm{~d} s=\frac{n(n-1) \ln (x)^{n-2}}{x} \mathrm{~d} x \Rightarrow x \text { will always cancel out with } r \\
\left\{r \cdot s-\int_{a}^{b} r \mathrm{~d} s\right\}_{1}=\left|\frac{x^{n+1}}{(n+1)^{2}} \cdot n \ln (x)^{n-1}\right|_{a}^{b}-\int_{a}^{b} \frac{x^{n}}{(n+1)^{2}} \cdot n(n-1) \ln (x)^{n-2} \mathrm{~d} x \tag{18}
\end{gather*}
$$

So the first 2 steps give this equation:

$$
\begin{align*}
\int_{a}^{b} x^{n} \ln (x)^{n} \mathrm{~d} x= & \left|\frac{x^{n+1}}{n+1} \cdot \ln (x)^{n}\right|_{a}^{b}-\left|\frac{x^{n+1}}{(n+1)^{2}} \cdot n \ln (x)^{n-1}\right|_{a}^{b} \tag{19}\\
& +\int_{a}^{b} \frac{x^{n}}{(n+1)^{2}} \cdot n(n-1) \ln (x)^{n-2} \mathrm{~d} x \tag{20}
\end{align*}
$$

We can now derive the repeating pattern for every integration step. The tricky part is hereby to see that

$$
\begin{equation*}
1, n, n(n-1), n(n-1)(n-2)=\frac{n!}{(n-k)!} \tag{21}
\end{equation*}
$$

In effect, partial integration $k=n$-times results in this sum

$$
\begin{equation*}
\int_{a}^{b} x^{n} \ln (x)^{n} \mathrm{~d} x=\sum_{k=0}^{n}\left|(-1)^{k} \frac{x^{n+1} \ln (x)^{n-k} n!}{\left.(n+1)^{k+1} \cdot(n-k)!\right)}\right|_{a}^{b} \tag{22}
\end{equation*}
$$

Going back to our initial integral (8) we can write:

$$
\begin{array}{rl}
\int_{0}^{\infty} x^{-x} \mathrm{~d} & x=\sum_{n=0}^{\infty} \frac{-1^{n}}{n!} \int_{0}^{\infty} x^{n} \ln (x)^{n} \mathrm{~d} x \\
= & \sum_{n=0}^{\infty} \frac{-1^{n}}{n!} \sum_{k=0}^{n}\left|(-1)^{k} \frac{x^{n+1} \ln (x)^{n-k} n!}{\left.(n+1)^{k+1} \cdot(n-k)!\right)}\right|_{0}^{\infty} \\
= & \sum_{n=0}^{\infty}-1^{n} \sum_{k=0}^{n}\left|(-1)^{k} \frac{x^{n+1} \ln (x)^{n-k}}{\left.(n+1)^{k+1} \cdot(n-k)!\right)}\right|_{0}^{\infty} \tag{23}
\end{array}
$$

When we set $a=0$ in (22), we see that the term with $x=a$ becomes zero. Thus we can write

$$
\begin{equation*}
\int_{0}^{b} x^{-x} \mathrm{~d} x=\sum_{n=0}^{\infty}-1^{n} \sum_{k=0}^{n}(-1)^{k} \frac{b^{n+1} \ln (b)^{n-k}}{\left.(n+1)^{k+1} \cdot(n-k)!\right)} \tag{24}
\end{equation*}
$$

Looking at Fig. 1 we see that we get a good approximation for the desired integral by using $b=5$. Using a CAS, we get:

$$
\begin{aligned}
\int_{0}^{5} x^{-x} \mathrm{~d} x & =\sum_{n=0}^{\infty}-1^{n} \sum_{k=0}^{n}(-1)^{k} \frac{5^{n+1} \ln (5)^{n-k}}{\left.(n+1)^{k+1} \cdot(n-k)!\right)} \\
& \approx \sum_{n=0}^{30}-1^{n} \sum_{k=0}^{n}(-1)^{k} \frac{5^{n+1} \ln (5)^{n-k}}{\left.(n+1)^{k+1} \cdot(n-k)!\right)} \\
& \approx 1.99533
\end{aligned}
$$

It is hereby interesting that the sum first results in a permanently positive value when summing at least $n=14$ terms. For larger b the greater the number of n terms has to be, see Fig. 4.

Figure 4: (24) for $n=[1 ; 24]$ and $b=[2,3,4,5]$.
Just to cross-check with (12), we get indeed (with $\left.\lim _{b \rightarrow 1} b\right)$:

$$
\begin{aligned}
\int_{0}^{1} x^{-x} \mathrm{~d} x & \approx \sum_{n=0}^{5}-1^{n} \sum_{k=0}^{n}(-1)^{k} \frac{1.0001^{n+1} 1 \ln (1.0001)^{n-k}}{\left.(n+1)^{k+1} \cdot(n-k)!\right)} \\
& \approx 1.2913
\end{aligned}
$$

However, in effect the symbolic integration has no benefit than to compute the integral numerically. We did not unveil any insights about the nature of the function x^{-x}.

$5 x^{-x}$ in complex space

It is obvious that x^{-x} is interesting with complex numbers as only for $x>0$ the imaginary part is always zero. So in a x - $f(x)$-diagram one gets only real values at $x=-1,-2, \ldots$. But what happens in between?

Figure 5: The function $f(x)$ in the complex space. The y-axis is $\Im(f(x))$, the z-axis is $\Re(f x)$.

Fig. 5 shows x^{-x} in the complex space. We can now also answer the question from Sec. 2 that the rule $A^{0}=1$ "has more power" than $0^{B}=0$ since $\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0-} f(x)=$ 1. This is not surprising since

$$
\begin{align*}
A^{B} & =\exp (B \cdot \ln (A)) \tag{25}\\
0^{0} & =\exp (0 \cdot \underbrace{\ln (0)}_{\rightarrow-\infty})
\end{align*}
$$

, so the term in the exponential is zero, and thus we get a 1 .
One can see in Fig. 5 that along the x -axis the function forms a spiral.
A spiral follows these equations:

$$
\begin{align*}
x_{\text {spiral }}(\phi) & =r(\phi) \cos (\phi) \tag{26}\\
y_{\text {spiral }}(\phi) & =r(\phi) \sin (\phi) \tag{27}
\end{align*}
$$

Trying to determine what $r(\phi)$ is, one notices that every $x=0.5$ there is a turn by $\phi=\pi / 2$, see Fig. 6 .

Figure 6: The function $f(x)$ in the complex space, viewed in the x-direction.

At $\phi=0: x=0$ and thus $f(0)=1+0 \mathrm{i}$.
At $\phi=\pi / 2: x=-0.5$ and thus $f(-0.5)=0+\sqrt{0.5}$ i.
At $\phi=\pi: x=-1$ and thus $f(-1)=-1+0$ i.
At $\phi=1.5 \pi: x=-1.5$ and thus $f(-1.5)=0-\sqrt{3.375} \mathrm{i}$.
This comes unexpected. Why 3.375 ? Why is this a number in such a "fundamental" function like x^{-x} ?

Moving on:
At $\phi=2 \pi: x=-2$ and thus $f(-2)=4+0 \mathrm{i}$.
At $\phi=2.5 \pi: x=-2.5$ and thus $f(-2.5)=0+\sqrt{97.65625} \mathrm{i}$.
At $\phi=3 \pi: x=-3$ and thus $f(-3)=27+0 \mathrm{i}$.
At $\phi=3.5 \pi: x=-3.5$ and thus $f(-3.5)=0-\sqrt{6433.9296875} \mathrm{i}$.
So what is happening here?

5.1 Logarithm of negative numbers

Since $x^{-x}=\exp (-x \ln (x))$, when we e.g. input $x=-1.5$, this triggers the computation of $\ln (-1.5)$. But what is the logarithm of a negative number?
$\ln (x)$ delivers the solution to the equation

$$
\begin{align*}
e^{y} & =x \tag{28}\\
y & =\ln (x) \tag{29}
\end{align*}
$$

So we can ask what y we get for

$$
\begin{equation*}
e^{y}=-1.5 \tag{30}
\end{equation*}
$$

This is a sensible question and there are solutions for $y .{ }^{1}$

Figure 7: The function $\ln (x)$ in the complex space.
To get an idea quickly we can simply plot $\ln (x)$ in the complex space. This is Fig. 7. The surprising result is that for $x<0$ the logarithm adds a constant offset in the imaginary axis by $\pi \mathrm{i}$. So we can write:

$$
\ln (x)= \begin{cases}\ln (-x)+\pi \mathrm{i} & \text { for } x<0 \tag{31}\\ \ln (x) & \text { for } x>0\end{cases}
$$

When we solve now (30) with this formula:

$$
\begin{align*}
y & =\ln (-1.5)=\ln (1.5)+\pi \mathrm{i} \tag{32}\\
e^{y} & =e^{\ln (1.5)+\pi \mathrm{i}} \tag{33}\\
& =e^{\ln (1.5)} \cdot \underbrace{e^{\pi \mathrm{i}}}_{\text {Euler's identity }} \tag{34}\\
& =1.5 \cdot-1 \tag{35}
\end{align*}
$$

So (31) solves indeed (30). ${ }^{2}$

[^0]
5.2 Explanation of the spiral

The formula (31) explains why $f(x)$ spirals for $x<0$:
Remember that $x^{-x}=\exp (-x \ln (x))$. For small $x, \exp (-x)$ growths. So the real part of $f(x)$ growths for smaller x. The logarithm inside the exponential adds to the growth a "push" for the the imaginary part. This means for the function $-x \ln (x)$ and $x<0$:

$$
\begin{equation*}
-x \ln (x)=-x \ln (-x)-x \pi \mathrm{i} \tag{36}
\end{equation*}
$$

$-x \ln (x)$ in the complex space is shown in Fig. 8. One can see that the function is pushed along the imaginary axis.

Figure 8: The function $-x \ln (x)$ in the complex space.

However, $f(x)=\exp (-x \ln (x))$ and this is way the there is a spiral:

$$
\begin{equation*}
\exp (-x \ln (-x)-x \pi \mathrm{i})=\underbrace{\exp (-x \ln (-x))}_{\text {exponential growth }} \underbrace{\exp (-x \pi \mathrm{i})}_{\text {helix }} \tag{37}
\end{equation*}
$$

The term $\exp (-x \pi \mathrm{i})$ brings in the rotation. To visualize this, we plot

$$
\begin{equation*}
h(x)=\exp (-x \pi \mathrm{i}) \tag{38}
\end{equation*}
$$

in the complex space, see Fig. 9. So with every $x=1$-step we get a half-turn around the x -axis in the plot.

Figure 9: The function $h(x)=\exp (-x \pi \mathrm{i})$ in the complex space.

This corresponds directly to the identity

$$
\begin{align*}
\exp (\mathrm{i} x) & =\cos (x)+\mathrm{i} \sin (x) \tag{39}\\
\exp (-x \pi \mathrm{i}) & =\cos (-x \pi)+\mathrm{i} \sin (-x \pi) \\
& =\cos (x \pi)-\mathrm{i} \sin (x \pi) \tag{40}
\end{align*}
$$

So the logarithm in $f(x)$ brings the shift into the imaginary axis and the exponential function around the logarithm transforms it to a permanent rotation around the x -axis.
We can now also compute the "mysterious" $f(-1.5)=-\sqrt{3.375} \mathrm{i}$:

$$
\begin{align*}
f(x) & =\exp (-x \ln (x)) \\
f(x<0) & =\exp (-x \ln (-x)-x \pi \mathrm{i}) \\
& =\exp (-x \ln (-x)) \cdot \exp (-x \pi \mathrm{i}) \\
f(-1.5) & =\exp (1.5 \ln (1.5)) \cdot \underbrace{\exp (1.5 \pi \mathrm{i})}_{=-\mathrm{i}} \\
& =-1.5^{1.5} \mathrm{i} \\
f(-1.5) & =-\sqrt{\underbrace{1.5^{3}}_{3.5^{3}}} \mathrm{i} \tag{41}
\end{align*}
$$

Since we know that $(-1)^{1}=-1$ and $(-2)^{2}=4$ we can cross-check our formula:

$$
\begin{aligned}
& f(-1)=\exp (1 \ln (1)) \cdot \underbrace{\exp (-1 \pi \mathrm{i})}_{=-1} \\
& f(-1)=-1^{1}=-1
\end{aligned}
$$

$$
\begin{aligned}
& f(-2)=\exp (2 \ln (2)) \cdot \underbrace{\exp (-2 \pi \mathrm{i})}_{=1} \\
& f(-2)=2^{2}=4
\end{aligned}
$$

Finally, we can also specify the growth function of the spiral according to (27):

$$
\begin{gather*}
\Re\left(f\left(x=\frac{\phi}{\pi}\right)\right)=r(\phi) \cos (\phi) \\
\Im\left(f\left(x=\frac{\phi}{\pi}\right)\right)=r(\phi) \sin (\phi) \\
r(\phi)=\exp \left(\frac{\phi}{\pi} \ln \left(\frac{\phi}{\pi}\right)\right) \tag{42}
\end{gather*}
$$

With $r(\phi)$ we can be creative. So for the family of functions

$$
\begin{equation*}
\exp (-a x \ln (x))=x^{(-a x)} \tag{43}
\end{equation*}
$$

we can set $0<a<1$ and get spirals with a lower growth rate.
We can also create spirals that converge to zero. Plotting (37) in the complex plane for $x \geq 0$ gives Fig. 10. This is a "spiral" whose radius increases for $0<x<1 / \mathrm{e}$ and for $x>1 /$ e its radius decreases to zero - exactly as $f(x)$ does. To get a real spiral whose radius only decreases with every turn, we can plot it for $x \geq 1$.
Derived from (37) one can take the family of functions $\exp (-a x \ln (-b x)-x \pi \mathrm{i})$ for $x>0$ and play around.

Figure 10: The function $\exp (-x \ln (-x)-x \pi \mathrm{i})$ for $x>0$ in the complex plane.

6 It can be complex in the complex space

With the knowledge from the previous section we can now play a bit around to create functions that look nice in the complex space.

$6.1 x^{-\ln (x)}$ in complex space

$$
\begin{align*}
p(x) & =x^{-\ln (x)}=\exp \left(-(\ln (x))^{2}\right) \\
p(x<0) & =\exp \left(-(\ln (-x)+x \pi \mathrm{i})^{2}\right) \\
& =\exp \left(-\left((\ln (-x))^{2}+2 \ln (-x) x \pi \mathrm{i}-x^{2} \pi^{2}\right)^{2}\right) \tag{44}
\end{align*}
$$

So there is a rotation but it is hard to see from the formula what exactly will happen. But thanks to our knowledge of (31), we can plot $p(x)$ for $x>0$, see Fig. 11, to predict the appearance for $x<0$: There will be a spiral with the maximum at $x=-1$ that decays for smaller $x . x^{-\ln (x)}$ in complex space is shown in Fig. 12.

$6.2 \exp \left(-x^{-x}\right)$ in complex space

Using the same technique like for $x^{-\ln (x)}$ and plotting $\exp \left(-x^{-x}\right)$ for $x>0$, see Fig. 11, we would predict: First a spiral then for smaller x a helix. No spiral since for small x

Figure 11: The functions $p(x)=x^{-\ln (x)}$ (blue) and $\exp \left(-x^{-x}\right)$ (red).
we get as result always a 1 .
But it looks actually different, see Fig. 13. First the expected spiral, but then from $x=[2,2.5]$ almost no spiral. At $x=2.58$ it starts to spiral with its maximum around $x=\pi$. Then it decays to zero. So our prediction was not true.

Rewriting $\exp \left(-x^{-x}\right)$ the usual way leads us to:

$$
\begin{equation*}
\exp \left(-x^{-x}\right)=\exp (-\exp (-x \ln (x))) \tag{45}
\end{equation*}
$$

using now (36) leads us to

$$
\begin{align*}
\exp (-\exp (-x \ln (x))) & =\exp (-\exp (-x \ln (-x)-x \pi \mathrm{i})) \tag{46}\\
& =\exp (-\underbrace{\exp (-x \ln (-x))}_{\text {exponential growth }} \underbrace{\exp (-x \pi \mathrm{i})}_{\text {helix }}) \tag{47}
\end{align*}
$$

So for small x the exponential growth goes to ∞ and since $\exp (-\infty)=0$ we should get a zero. This is what we see but for the range $x=[0,4]$ it is hard to make a prediction just by looking at (47).

By the way, it is interesting to see how $\exp (\exp (-x \pi \mathrm{i}))$ gives a distorted helix, see Fig. 14.

Figure 12: The function $p(x)$ in the complex space.

(a) The function $\exp \left(-x^{-x}\right)$ in the interval $x=[-2.58,1]$.

(b) The function $\exp \left(-x^{-x}\right)$ in the interval $x=[-4,0.1]$.

Figure 13: The function $\exp \left(-x^{-x}\right)$ and in the complex space for different intervals of x.

Figure 14: The function $\exp (\exp (-x \pi \mathrm{i}))$ in the complex plane.

7 In 3D

To transform $f(x)$ into 3D we can define it that way:

$$
\begin{equation*}
f_{3 D}(x, y)=\frac{1}{x^{x} y^{y}} \tag{48}
\end{equation*}
$$

$f_{3 D}(x, y)$ is shown in Fig. 15. There is nothing new about it, it just looks nice.

Figure 15: The function $f_{3 D}(x, y)$.

[^0]: ${ }^{1}$ For details about the complex logarithm, see the corresponding Wikipedia article: Complex logarithm.
 ${ }^{2}$ Actually there are infinity many solutions since $e^{\pi i}$ is actually a rotation by 180° around the $\Re(x)$-axis in the complex space. Therefore all $e^{(2 k+1) \pi \mathrm{i}}=-1, k=1,2,3 \ldots$ are solutions.

